login
A065881
Ultimate modulo 10: right-hand nonzero digit of n.
15
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5
OFFSET
1,2
FORMULA
If n mod 10 = 0 then a(n) = a(n/10), otherwise a(n) = n mod 10.
EXAMPLE
a(3)=3, a(23)=3, a(30)=3, a(12300)=3.
MATHEMATICA
um10[n_]:=Module[{idns=Split[IntegerDigits[n]]}, If[idns[[-1, 1]] == 0, idns[[-2, 1]], idns[[-1, 1]]]]; Array[um10, 110] (* Harvey P. Dale, Dec 26 2016 *)
PROG
(PARI) { for (n=1, 1000, a=n; while (a%10 == 0, a\=10); write("b065881.txt", n, " ", a%10) ) } \\ Harry J. Smith, Nov 03 2009
(Python)
def A065881(n): return int(str(n).rstrip('0')[-1]) # Chai Wah Wu, Dec 07 2023
CROSSREFS
In base 2 this is A000012, base 3 A060236 and base 4 A065882. For n <= 100 this sequence is also "Remove final zeros from n" which in bases 2, 3 and 4 produces A000265, A038502 and A065883. Cf. A010879.
Sequence in context: A257295 A004427 A113230 * A133048 A214950 A373064
KEYWORD
base,nonn
AUTHOR
Henry Bottomley, Nov 26 2001
STATUS
approved