login
A065716
Number of 5's in decimal expansion of 2^n.
11
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 1, 4, 1, 0, 1, 1, 0, 2, 1, 2, 1, 2, 2, 1, 1, 0, 2, 4, 1, 2, 2, 2, 0, 2, 2, 0, 0, 3, 5, 5, 1, 0, 1, 1, 3, 2, 4, 3, 3, 2, 1, 3, 3, 2, 1, 3, 4, 4, 3, 1, 1, 3, 4, 1, 3, 2, 4, 5, 5, 2, 2
OFFSET
0,17
LINKS
EXAMPLE
2^8 = 256 so a(8)=1.
MATHEMATICA
Table[ Count[ IntegerDigits[2^n], 5], {n, 0, 100} ]
DigitCount[#, 10, 5]&/@(2^Range[0, 100]) (* Harvey P. Dale, Nov 13 2021 *)
PROG
(PARI) a(n) = #select(x->(x==5), digits(2^n)); \\ Michel Marcus, Jun 15 2018
(Python)
def A065716(n):
return str(2**n).count('5') # Chai Wah Wu, Feb 14 2020
CROSSREFS
Cf. 0's A027870, 1's A065712, 2's A065710, 3's A065714, 4's A065715, 6's A065717, 7's A065718, 8's A065719, 9's A065744.
Sequence in context: A340998 A336562 A067255 * A375107 A079409 A369461
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Dec 04 2001
EXTENSIONS
More terms from Robert G. Wilson v, Dec 07 2001
STATUS
approved