login
A064855
a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n.
3
1, 2, 0, 14, 16, 10, 66, 21, 321, 917, 2037, 1550, 2420, 15152, 27439, 46731, 110953, 137148, 336949, 703202, 805647, 181132, 5835407, 3343039, 21816283, 18528238, 95129681, 241918238, 311938330, 48698222, 1539688558, 3481498150
OFFSET
1,2
COMMENTS
A generalization of A002380, A064536 and A064854. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 6^n into like powers as follows: 6^n = c5*5^n + c4*4^n + c3*3^n + c2*2^n + c1*1^n.
LINKS
FORMULA
n = 8: 6^8 = 1679616 = 4*390625 + 1*65536 + 7*6561 + 22*256 + 21*1 where a(8)=21, the last coefficient and here 6^8 is decomposed into 4 + 1 + 7 + 22 + 21 = 55 like (8th) powers.
MATHEMATICA
Table[Fold[Mod, 6^n, Range[5, 2, -1]^n], {n, 40}] (* Harvey P. Dale, Mar 14 2011 *)
PROG
(PARI) { for (n=1, 200, a=(((6^n%5^n)%4^n)%3^n)%2^n; write("b064855.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 08 2001
STATUS
approved