login
A064095
Row sums of triangle A064094.
2
1, 2, 3, 5, 11, 34, 142, 753, 4826, 36028, 305133, 2879841, 29909422, 338479430, 4139716659, 54339861531, 761150445735, 11322139144240, 178116143657890, 2952831190016239, 51423702126549167, 938126972940647198, 17883424301972473340, 355435808475002747565, 7350551776003412371185
OFFSET
0,2
LINKS
MATHEMATICA
A064094[n_, k_]:= If[k==0 || k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*k^j, {j, 0, n-k-1}]/(n-k) ];
A064095[n_]:= Sum[A064094[n, k], {k, 0, n}];
Table[A064095[n], {n, 0, 30}] (* G. C. Greubel, Sep 27 2024 *)
PROG
(PARI)
T(n, k)= if (n==k, 1, sum(i=0, n-k-1, (n-k-i)*binomial(n-k-1+i, i)*(k^i)/(n-k))); \\ A064094
a(n) = sum(k=0, n, T(n, k));
(Magma)
function A064094(n, k)
if k eq 0 or k eq n then return 1;
else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
end if;
end function;
A064095:= func< n | (&+[A064094(n, k): k in [0..n]]) >;
[A064095(n): n in [0..30]]; // G. C. Greubel, Sep 27 2024
(SageMath)
def A064094(n, k):
if (k==0 or k==n): return 1
else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)
def A064095(n): return sum(A064094(n, k) for k in range(n+1))
[A064095(n) for n in range(31)] # G. C. Greubel, Sep 27 2024
CROSSREFS
Cf. A064094.
Sequence in context: A124538 A124627 A305971 * A061935 A067078 A124561
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
EXTENSIONS
More terms from Michel Marcus, Oct 28 2022
STATUS
approved