login
A062916
Non-palindromic number and its reversal are both multiples of 19.
1
1710, 2166, 2318, 2489, 3230, 3705, 3876, 4940, 5073, 5396, 5548, 6460, 6612, 6783, 6935, 7068, 8132, 8455, 8607, 9690, 9842, 11134, 11457, 11609, 12692, 12844, 13129, 14364, 14516, 14687, 14839, 15903, 16036, 16359, 17100, 17423
OFFSET
1,1
EXAMPLE
2489 and 9842 are both multiples of 19.
MATHEMATICA
okQ[n_]:=Module[{idn=IntegerDigits[n], ridn}, ridn=Reverse[idn]; Divisible[ FromDigits[ ridn], 19] && idn!=ridn]; Select[19*Range[1000], okQ] (* Harvey P. Dale, Dec 03 2011 *)
Select[19 Range[1000], !PalindromeQ[#]&&Divisible[IntegerReverse[#], 19]&] (* Harvey P. Dale, Sep 20 2021 *)
PROG
(ARIBAS) Programs for A062916 etc: If "m <> rev and" is deleted in line 8, one obtains the sequences which include palindromes (e.g., A062907).
(ARIBAS) function A0629xy(n, stop: integer); var m, rev: integer; begin m := n; while m < stop do rev := int_reverse(m); if m <> rev and rev mod n = 0 then write(m, " "); end; inc(m, n); end; end;
(PARI) Palin(x)= { if (x==0, return(1)); if (x==10, return(0)); y=z=x; ds=ceil(log(x)/log(10)); t=10^(ds - 1); for (i=1, ds\2, d=y-10*(y\10); y\=10; e=z\t; z-=t*e; t/=10; if (e!=d, return(0)) ); return(1) }
{ default(realprecision, 50); n=0; forstep (m=0, 10^9, 19, if (Palin(m), next); x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if (r%19 == 0, write("b062916.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 12 2009
CROSSREFS
Sequence in context: A222553 A345516 A345769 * A241554 A352949 A129540
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jul 01 2001
EXTENSIONS
More terms from Klaus Brockhaus, Jul 02 2001
STATUS
approved