login
A062790
Moebius transform of the cototient function A051953.
4
0, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 3, 1, 6, 5, 4, 1, 6, 1, 5, 7, 10, 1, 6, 4, 12, 6, 7, 1, 8, 1, 8, 11, 16, 9, 8, 1, 18, 13, 10, 1, 12, 1, 11, 12, 22, 1, 12, 6, 20, 17, 13, 1, 18, 13, 14, 19, 28, 1, 13, 1, 30, 16, 16, 15, 20, 1, 17, 23, 24, 1, 16, 1, 36, 24, 19, 15, 24, 1, 20, 18, 40, 1, 19
OFFSET
1,6
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384 (terms 1 .. 2000 from Harry J. Smith)
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
a(n) = Sum f(n/d)*mu(d), where d divides n and f(x) = x-phi(x) = A051953(x).
a(n) = A056239(A318836(n)). - Antti Karttunen, Nov 24 2018
From Amiram Eldar, Dec 15 2023: (Start)
a(n) = A000010(n) - A007431(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 6/Pi^2 - 36/Pi^4. (End)
EXAMPLE
n = 255, its divisors are {1,3,5,25,17,51,85,255}, A051953(255/d) = {127,21,19,1,7,1,1,0}, mu(d) = {1,-1,-1,1,-1,1,1,-1}, the sum is a(255) = 127-21-19+1-7+1+1+0 = 130-47 = 83.
MATHEMATICA
Table[DirichletConvolve[MoebiusMu[n], n-EulerPhi[n], n, k], {k, 100}] (* Amiram Eldar, Nov 24 2018 *)
PROG
(PARI) A062790(n)={
local(a=0) ;
fordiv(n, d,
a += moebius(d)*(n/d-eulerphi(n/d)) ;
) ;
return(a) ;
} \\ R. J. Mathar, Mar 24 2012
(PARI) A062790(n) = sumdiv(n, d, moebius(n/d)*(d-eulerphi(d))); \\ Antti Karttunen, Nov 24 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 19 2001
EXTENSIONS
OFFSET changed from 0 to 1 by Harry J. Smith, Aug 11 2009
STATUS
approved