login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062327
Number of divisors of n over the Gaussian integers.
20
1, 3, 2, 5, 4, 6, 2, 7, 3, 12, 2, 10, 4, 6, 8, 9, 4, 9, 2, 20, 4, 6, 2, 14, 9, 12, 4, 10, 4, 24, 2, 11, 4, 12, 8, 15, 4, 6, 8, 28, 4, 12, 2, 10, 12, 6, 2, 18, 3, 27, 8, 20, 4, 12, 8, 14, 4, 12, 2, 40, 4, 6, 6, 13, 16, 12, 2, 20, 4, 24, 2, 21, 4, 12, 18, 10, 4, 24, 2, 36, 5, 12, 2, 20, 16, 6
OFFSET
1,2
COMMENTS
Divisors which are associates are identified (two Gaussian integers z1, z2 are associates if z1 = u * z2 where u is a unit, i.e., one of 1, i, -1, -i).
a(A004614(n)) = A000005(n). - Vladeta Jovovic, Jan 23 2003
a(A004613(n)) = A000005(n)^2. - Benedikt Otten, May 22 2013
FORMULA
Presumably a(n) = 2 iff n is a rational prime == 3 mod 4 (see A045326). - N. J. A. Sloane, Jan 07 2003, Feb 23 2007
Multiplicative with a(2^e) = 2*e+1, a(p^e) = e+1 if p mod 4=3 and a(p^e) = (e+1)^2 if p mod 4=1. - Vladeta Jovovic, Jan 23 2003
EXAMPLE
For example, 5 has divisors 1, 1+2i, 2+i and 5.
MAPLE
a:= n-> mul(`if`(i[1]=2, 2*i[2]+1, `if`(irem(i[1], 4)=3,
i[2]+1, (i[2]+1)^2)), i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jul 09 2021
MATHEMATICA
Table[Length[Divisors[n, GaussianIntegers -> True]], {n, 30}] (* Alonso del Arte, Jan 25 2011 *)
DivisorSigma[0, Range[90], GaussianIntegers->True] (* Harvey P. Dale, Mar 19 2017 *)
PROG
(Haskell)
a062327 n = product $ zipWith f (a027748_row n) (a124010_row n) where
f 2 e = 2 * e + 1
f p e | p `mod` 4 == 1 = (e + 1) ^ 2
| otherwise = e + 1
-- Reinhard Zumkeller, Oct 18 2011
(PARI)
a(n)=
{
my(r=1, f=factor(n));
for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
if(p==2, r*=(2*e+1));
if(p%4==1, r*=(e+1)^2);
if(p%4==3, r*=(e+1));
);
return(r);
} \\ Joerg Arndt, Dec 09 2016
CROSSREFS
Sequence in context: A087669 A053087 A316519 * A075491 A326730 A089279
KEYWORD
nonn,nice,mult
AUTHOR
Reiner Martin, Jul 12 2001
STATUS
approved