OFFSET
1,2
COMMENTS
a(n)+1 is also the total number of factors in a factorization of n+n*i into Gaussian primes. - Jason Kimberley, Dec 17 2011
Record high values are at a(2^k) = 2*k for k = 0, 1, 2, ... . - Bill McEachen, Oct 11 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Gaussian Prime.
FORMULA
Fully additive with a(p)=2 if p=2 or p mod 4=1 and a(p)=1 if p mod 4=3. - Vladeta Jovovic, Jan 20 2003
EXAMPLE
2 = (1+i)*(1-i), so a(2) = 2; 9 = 3*3, so a(9) = 2.
a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 3*a(2)+2*a(3)+4*a(5)+5*a(7)+3*a(11) = 3*2+2*1+4*2+5*1+3*1 = 24. - Vladeta Jovovic, Jan 20 2003
MATHEMATICA
Join[{0}, Table[f = FactorInteger[n, GaussianIntegers -> True]; cnt = Total[Transpose[f][[2]]]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt--]; cnt, {n, 2, 100}]] (* T. D. Noe, Mar 31 2014 *)
a[n_]:=PrimeOmega[n, GaussianIntegers -> True]; Array[a, 104] (* Stefano Spezia, Sep 29 2024 *)
PROG
(PARI) a(n)=my(f=factor(n)); sum(i=1, #f~, if(f[i, 1]%4==3, 1, 2)*f[i, 2]) \\ Charles R Greathouse IV, Mar 31 2014
CROSSREFS
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), this sequence ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319444.
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Jan 11 2003
EXTENSIONS
More terms from Vladeta Jovovic, Jan 12 2003
STATUS
approved