login
A062173
a(n) = 2^(n-1) mod n.
27
0, 0, 1, 0, 1, 2, 1, 0, 4, 2, 1, 8, 1, 2, 4, 0, 1, 14, 1, 8, 4, 2, 1, 8, 16, 2, 13, 8, 1, 2, 1, 0, 4, 2, 9, 32, 1, 2, 4, 8, 1, 32, 1, 8, 31, 2, 1, 32, 15, 12, 4, 8, 1, 14, 49, 16, 4, 2, 1, 8, 1, 2, 4, 0, 16, 32, 1, 8, 4, 22, 1, 32, 1, 2, 34, 8, 9, 32, 1, 48, 40, 2, 1, 32, 16, 2, 4, 40, 1, 32, 64, 8, 4, 2, 54, 32, 1, 58, 58, 88, 1, 32, 1, 24, 46
OFFSET
1,6
COMMENTS
If p is an odd prime then a(p)=1. However, a(n) is also 1 for pseudoprimes to base 2 such as 341.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..101101 (first 1000 terms from Harry J. Smith)
FORMULA
a(n) = A106262(2*n-3, n-2). - G. C. Greubel, Jan 11 2023
EXAMPLE
a(5) = 2^(5-1) mod 5 = 16 mod 5 = 1.
MATHEMATICA
Array[Mod[2^(# - 1), #] &, 105] (* Michael De Vlieger, Jul 01 2018 *)
Array[PowerMod[2, #-1, #]&, 120] (* Harvey P. Dale, May 17 2023 *)
PROG
(PARI) A062173(n) = if(1==n, 0, lift(Mod(2, n)^(n-1))); \\ Antti Karttunen, Jul 01 2018
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a062173 n = powerMod 2 (n - 1) n -- Reinhard Zumkeller, Oct 17 2015
(Magma) [Modexp(2, n-1, n): n in [1..110]]; // G. C. Greubel, Jan 11 2023
(SageMath) [power_mod(2, n-1, n) for n in range(1, 110)] # G. C. Greubel, Jan 11 2023
CROSSREFS
Cf. A176997 (after the initial term, gives the positions of ones).
Sequence in context: A327805 A276689 A091453 * A004558 A129699 A002349
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jun 12 2001
EXTENSIONS
More terms from Antti Karttunen, Jul 01 2018
STATUS
approved