login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061688
Generalized Bell numbers.
3
1, 1, 65, 48844, 209175233, 3464129078126, 173566857025139312, 22208366234650578141209, 6409515697874502425444186817, 3794729706423816704068204814925754, 4276126299841623727960390049367617509190, 8631647765438316626054238101611711249984175399
OFFSET
0,3
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^7 = exp(Sum_{n>=1} x^n / (n!)^7). - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n, k)^7*(n-k)*a(k)/n, k=0..n-1))
end:
seq(a(n), n=0..12); # Alois P. Heinz, Nov 07 2008
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Binomial[n, k]^7*(n-k)*a[k]/n, {k, 0, n-1}]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 17 2014, after Alois P. Heinz *)
CROSSREFS
Column k=7 of A275043.
Sequence in context: A291456 A269794 A242283 * A337808 A218689 A171706
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 18 2001
EXTENSIONS
More terms from Alois P. Heinz, Nov 07 2008
STATUS
approved