login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242283
a(n) = Sum_{k=0..n} (k!)^6 * StirlingS2(n,k)^3.
2
1, 1, 65, 48385, 201202625, 3177816192001, 149444281172914625, 17688550295661103160065, 4659004670032668841494537665, 2485460204094055083075883434816001, 2493268982658347340546535733064008565185, 4428569787044987118931586341533071670315481345
OFFSET
0,3
COMMENTS
Generally, for p>=1 is Sum_{k=0..n} (k!)^(2*p) * StirlingS2(n,k)^p asymptotic to c * (n!)^(2*p), where c = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^p).
FORMULA
a(n) ~ c * (n!)^6, where c = 1.1269621849236767... = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^3) = HypergeometricPFQ[{}, {1, 1}, 1/8].
MAPLE
a:= n-> add(k!^6*Stirling2(n, k)^3, k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Oct 23 2023
MATHEMATICA
Table[Sum[(k!)^6 * StirlingS2[n, k]^3, {k, 0, n}], {n, 0, 20}]
CROSSREFS
Cf. A064618 (p=1), A242282 (p=2).
Sequence in context: A103345 A291456 A269794 * A061688 A337808 A218689
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 10 2014
STATUS
approved