login
A061150
a(n) = Sum_{d|n} d*prime(d).
7
2, 8, 17, 36, 57, 101, 121, 188, 224, 353, 343, 573, 535, 729, 777, 1036, 1005, 1406, 1275, 1801, 1669, 2087, 1911, 2861, 2482, 3167, 3005, 3753, 3163, 4541, 3939, 5228, 4879, 5737, 5391, 7314, 5811, 7475, 7063, 8873, 7341, 9957, 8215, 10607, 9849
OFFSET
1,1
LINKS
FORMULA
Equals M * V, where M = A127093 as an infinite lower triangular matrix and V = A000040, the sequence of primes as a vector. E.g., a(4) = 36 = 1*2 + 2*3 + 4*7, where (1, 2, 0, 4) = row 4 of A127093 and 2, 3 and 7 are p(1), p(2), p(4). - Gary W. Adamson, Jan 11 2007
L.g.f.: log(Product_{k>=1} 1/(1 - x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
EXAMPLE
a(4)=36 because the divisors of 4 are 1,2,4 and 1*p(1) + 2*p(2) + 4*p(4) = 1*2 + 2*3 + 4*7 = 36.
MAPLE
with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(div[j]*ithprime(div[j]), j=1..tau(n)) end: seq(a(n), n=1..55); # Emeric Deutsch, Jan 20 2007
PROG
(PARI) a(n) = sumdiv(n, d, d*prime(d)); \\ Michel Marcus, Jun 24 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 16 2001
EXTENSIONS
Edited by N. J. A. Sloane, May 04 2007
STATUS
approved