login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060840
Number of irreducible representations of symmetric group S_n whose degree is not divisible by 3.
2
1, 2, 3, 3, 6, 9, 9, 18, 9, 9, 18, 27, 27, 54, 81, 81, 162, 54, 54, 108, 162, 162, 324, 486, 486, 972, 27, 27, 54, 81, 81, 162, 243, 243, 486, 243, 243, 486, 729, 729, 1458, 2187, 2187, 4374, 1458, 1458, 2916, 4374, 4374, 8748, 13122, 13122, 26244, 405, 405, 810
OFFSET
1,2
REFERENCES
I. G. MacDonald, On the degrees of the irreducible representations of symmetric groups, Bull. London Math. Soc. 3 (1971), 189-192
LINKS
FORMULA
If n = sum a_i*3^e[i] in base 3 where a_i is 0, 1, 2 then a(n) = product g(i) where if a(i) = 0 g(i) = 1, if a(i) = 1 g(i) = 3^i, if a(i) = 2 g(i) = 3^i * (3^i + 3) / 2
EXAMPLE
a(4) = 3 because the degrees for S_4 are 1,1,2,3,3 and by the formula: 4 in base 3 is 11 and a(4) = 1*3
MATHEMATICA
a[n_] := (id = IntegerDigits[n, 3]; lg = Length[id]; Times @@ Table[ Which[ id[[lg-i]] == 0, 1, id[[lg-i]] == 1, 3^i, True, 3^i*(3^i+3)/2], {i, lg-1, 0, -1}]); Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Apr 30 2013 *)
PROG
(Sage)
def A060840(n) : dig = n.digits(3); return prod([1, 3^m, 3^m*(3^m+3)//2][dig[m]] for m in range(len(dig)))
# Eric M. Schmidt, Apr 30 2013
CROSSREFS
Cf. A059867.
Sequence in context: A346030 A261090 A183560 * A357654 A276096 A074717
KEYWORD
nonn,easy
AUTHOR
Noam Katz (noamkj(AT)hotmail.com), May 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 10 2001
STATUS
approved