login
A060312
Number of distinct ways to tile a 2 X n rectangle with dominoes (solutions are identified if they are rotations or reflections of each other).
6
1, 1, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
OFFSET
1,3
COMMENTS
Same as A001224 except that there a(2)=2 not 1. - N. J. A. Sloane, Mar 30 2015
LINKS
A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
R. J. Mathar, Paving rectangular regions with rectangular tiles, ..., arXiv:1311.6135 [math.CO], Table 9.
W. E. Patten (proposer) and S. W. Golomb (solver), Problem E1470, "Covering a 2Xn rectangle with dominoes", Amer. Math. Monthly, 69 (1962), 61-62.
FORMULA
If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n) + F(n+1))/2 and a(2n+1) = (F(2n+1) + F(n))/2 for n > 1.
G.f.: -x*(x^7 + x^6 + x^5 + 2*x^4 - x^3 + x^2 - 1) / ((x^2 + x - 1)*(x^4 + x^2 - 1)). - Colin Barker, Dec 15 2012
EXAMPLE
a(3)=2 because of the configurations |= and |||.
MAPLE
# Maple code for A060312 and A001224 from N. J. A. Sloane, Mar 30 2015
with(combinat); F:=fibonacci;
f:=proc(n) option remember;
if n=2 then 1 # change this to 2 to get A001224
elif (n mod 2) = 0 then (F(n+1)+F(n/2+2))/2;
else (F(n+1)+F((n+1)/2))/2; fi; end;
[seq(f(n), n=1..50)];
MATHEMATICA
CoefficientList[Series[-(x^7 + x^6 + x^5 + 2 x^4 - x^3 + x^2 - 1) / ((x^2 + x - 1) (x^4 + x^2 - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 1, 2, 4, 5, 9, 12, 21}, 40] (* Harvey P. Dale, Mar 13 2024 *)
PROG
(Magma) [n eq 1 select 1 else (1/2)*(Fibonacci(n+2)+Fibonacci(Floor((n-(-1)^n)/2)+2)): n in [0..40]]; // Vincenzo Librandi, Nov 22 2014
CROSSREFS
Essentially the same as A001224, which is the main entry for this sequence. Other versions of the sequence can be found in A068928 and A102526.
Sequence in context: A241824 A144121 A240576 * A218934 A348176 A325716
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 27 2001
EXTENSIONS
Edited by N. J. A. Sloane, Mar 30 2015
STATUS
approved