login
A059825
Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^8 *product_{i=1..t} (1-x^i) ).
8
0, 1, 9, 44, 164, 485, 1278, 2949, 6382, 12661, 24101, 43063, 74932, 124041, 201597, 315048, 485627, 724514, 1071104, 1539099, 2197385, 3062512, 4246873, 5765303, 7804391, 10359671, 13728320, 17882076, 23264374, 29792631, 38154696
OFFSET
0,3
LINKS
G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
MAPLE
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i, i=1..n), n=1..101): end; # with k=8
CROSSREFS
Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), ..., A059825 (k=8).
Sequence in context: A213755 A036599 A229404 * A074631 A084903 A349878
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 24 2001
STATUS
approved