login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059564
Beatty sequence for (e^2 + 1)/(e^2 - e + 1).
4
1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*(e^2+1)/(e^2-e+1)). - Michel Marcus, Jan 05 2015
MAPLE
A059564:=n->floor(n*(exp(1)^2+1)/(exp(1)^2-exp(1)+1)): seq(A059564(n), n=1..100); # Wesley Ivan Hurt, Jan 03 2016
MATHEMATICA
Table[Floor[n (E^2 + 1)/(E^2 - E + 1)], {n, 80}] (* Wesley Ivan Hurt, Jan 03 2016 *)
PROG
(PARI) { default(realprecision, 100); e=exp(1); b=(e^2 + 1)/(e^2 - e + 1); for (n = 1, 2000, write("b059564.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059563.
Sequence in context: A127450 A329843 A292640 * A329925 A001651 A224999
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved