Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 17 2024 04:19:40
%S 3,6,9,13,16,19,22,26,29,32,35,39,42,45,48,52,55,58,61,65,68,71,75,78,
%T 81,84,88,91,94,97,101,104,107,110,114,117,120,123,127,130,133,136,
%U 140,143,146,150,153,156,159,163,166,169,172,176,179,182,185,189,192
%N Beatty sequence for 3^(1/3)/(3^(1/3)-1).
%H Harry J. Smith, <a href="/A059540/b059540.txt">Table of n, a(n) for n = 1..2000</a>
%H Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no.4, 335-345.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F a(n) = floor(n/(1 - A072365)). - _Paolo Xausa_, Jul 17 2024
%t Floor[Range[100]/(1 - 3^(-1/3))] (* _Paolo Xausa_, Jul 17 2024 *)
%o (PARI) { default(realprecision, 100); b=3^(1/3)/(3^(1/3) - 1); for (n = 1, 2000, write("b059540.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 28 2009
%Y Beatty complement is A059539.
%Y Cf. A072365.
%K nonn,easy
%O 1,1
%A _Mitch Harris_, Jan 22 2001