login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059540
Beatty sequence for 3^(1/3)/(3^(1/3)-1).
3
3, 6, 9, 13, 16, 19, 22, 26, 29, 32, 35, 39, 42, 45, 48, 52, 55, 58, 61, 65, 68, 71, 75, 78, 81, 84, 88, 91, 94, 97, 101, 104, 107, 110, 114, 117, 120, 123, 127, 130, 133, 136, 140, 143, 146, 150, 153, 156, 159, 163, 166, 169, 172, 176, 179, 182, 185, 189, 192
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n/(1 - A072365)). - Paolo Xausa, Jul 17 2024
MATHEMATICA
Floor[Range[100]/(1 - 3^(-1/3))] (* Paolo Xausa, Jul 17 2024 *)
PROG
(PARI) { default(realprecision, 100); b=3^(1/3)/(3^(1/3) - 1); for (n = 1, 2000, write("b059540.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059539.
Cf. A072365.
Sequence in context: A022853 A198264 A186516 * A190363 A059550 A080081
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved