login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059536
Beatty sequence for zeta(2)/(zeta(2)-1).
2
2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 28, 30, 33, 35, 38, 40, 43, 45, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 153, 155, 158
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*zeta(2)/(zeta(2)-1)). - Michel Marcus, Jan 05 2015
MATHEMATICA
Floor[Range[100]*Zeta[2]/(Zeta[2] - 1)] (* Paolo Xausa, Jul 06 2024 *)
PROG
(PARI) { default(realprecision, 100); b=zeta(2)/(zeta(2) - 1); for (n = 1, 2000, write("b059536.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
CROSSREFS
Cf. A013661. Beatty complement is A059535.
Sequence in context: A038126 A047215 A330067 * A030193 A292653 A028250
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved