login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059534
Beatty sequence for 1 + 1/Catalan's constant.
3
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*(1 + 1/A006752)). - Paolo Xausa, Jul 05 2024
MATHEMATICA
Floor[Range[100]*(1 + 1/Catalan)] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { numdigits=100; default(realprecision, numdigits+80); s=1.0; n=5*numdigits; j=4*n+1; si=-1.0; for (i=3, j-2, s+=si/i^2; si=-si; i++; ); s+=0.5/j^2; ttk=4.0; d=4.0*j^3; xk=2.0; xkp=xk; for (k=2, 100000000, term=(ttk-1)*ttk*xkp; xk++; xkp*=xk; if (k>2, term*=xk; xk++; xkp*=xk; ); term*=bernreal(k)/d; sn=s+term; if (sn==s, break); s=sn; ttk*=4.0; d*=(k+1)*(k+2)*j^2; k++; ); b=1 + 1/s; for (n = 1, 2000, write("b059534.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
CROSSREFS
Beatty complement is A059533.
Cf. A006752.
Sequence in context: A147819 A230201 A373787 * A137804 A246414 A054965
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved