login
A059485
Highest prime factor is greater than 3.
5
5, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89
OFFSET
1,1
COMMENTS
Numbers n such that A006530(n) > 3. - Felix Fröhlich, Dec 22 2016
LINKS
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Jul 06 2016
MATHEMATICA
fQ[n_]:=! PowerMod[6, n, n]==0; Select[Range [100], fQ] (* Vincenzo Librandi, Dec 22 2016 *)
PROG
(PARI) is(n)=n>>=valuation(n, 2); n/=3^valuation(n, 3); n>1 \\ Charles R Greathouse IV, Jul 06 2016; corrected by Michel Marcus, May 19 2022
(Magma) [n: n in [1..100] | not PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Dec 22 2016
(Python)
from sympy import integer_log
def A059485(n):
def f(x): return n+sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Sep 16 2024
CROSSREFS
Complement of A003586. Cf. A007310 for numbers whose smallest prime factor (if there is one) is greater than 3.
Cf. A006530.
Sequence in context: A264349 A320114 A364284 * A028786 A282391 A080760
KEYWORD
nonn,easy
AUTHOR
Simone Caramel (simonecaramel(AT)libero.it), Feb 04 2001
EXTENSIONS
More terms from Henry Bottomley, Feb 05 2001
STATUS
approved