login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058972
For a rational number p/q let f(p/q) = sum of aliquot divisors of p+q divided by number of divisors of p+q; sequence gives numbers k such that, starting at k/1 and iterating f, an integer is eventually reached.
8
3, 9, 15, 24, 25, 29, 33, 35, 50, 51, 55, 57, 59, 63, 73, 79, 80, 81, 85, 87, 89, 90, 95, 99, 105, 119, 120, 121, 128, 131, 139, 143, 145, 169, 177, 179, 181, 183, 193, 195, 201, 203, 204, 211, 215, 217, 218, 219, 221, 225, 227, 233, 247, 248, 255, 273, 275, 288
OFFSET
1,1
LINKS
P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From N. J. A. Sloane, Jan 03 2013
EXAMPLE
f(9/1) = 8/4 = 2, an integer, so 9 is in the sequence;
f(10/1) = 1/2 and f(1/2)=1/2, so 10 is not in the sequence.
MATHEMATICA
f[r_] := If[init == False && IntegerQ[r], r, init = False; p = Numerator[r]; q = Denominator[r]; d = Most[Divisors[p+q]]; Total[d]/(Length[d]+1)]; ok[n_] := IntegerQ[ init = True; FixedPoint[f, n/1]]; ok[1] = False; A058972 = Select[ Range[300], ok] (* Jean-François Alcover, Dec 21 2011 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a058972 n = a058972_list !! (n-1)
a058972_list = map numerator $ filter ((f [])) [1..] where
f ys q = denominator y == 1 || not (y `elem` ys) && f (y : ys) y
where y = a001065 q' % a000005 q'
q' = numerator q + denominator q
-- Reinhard Zumkeller, Jun 15 2013
(PARI) f2(p, q) = (sigma(p+q)-p-q)/numdiv(p+q);
f1(r) = f2(numerator(r), denominator(r));
loop(list) = {my(v=Vecrev(list)); for (i=2, #v, if (v[i] == v[1], return(1)); ); }
ff(n) = {my(ok=0, m=f2(n, 1), list=List()); while(denominator(m) != 1, m = f1(m); listput(list, m); if (loop(list), return (0)); ); return(m); }
isok(m) = ff(m) > 0; \\ Michel Marcus, Feb 09 2022
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 14 2001
EXTENSIONS
Corrected and extended by Matthew Conroy, Apr 18 2001
STATUS
approved