login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058947
Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order.
16
11, 111, 1011, 1101, 10011, 11001, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1011011, 1100001, 1100111, 1101101, 1110011, 10000011, 10001001, 10001111, 10010001, 10011101, 10100111, 10101011
OFFSET
1,1
COMMENTS
Church's table extends through degree 11.
EXAMPLE
The first few are x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
MATHEMATICA
car = 2; maxDegree = 13;
okQ[{1, 1}] = True;
okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 09 2019 *)
CROSSREFS
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946.
Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
a(n) = A007088(A091250(n)).
Sequence in context: A143573 A248039 A244204 * A282912 A284025 A283176
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 13 2001
STATUS
approved