login
A057647
Number of walks of length n on the upper-right part of the hexagonal lattice.
2
1, 2, 9, 38, 185, 914, 4706, 24632, 131309, 708284, 3861380, 21225588, 117511456, 654474352, 3664017964, 20604973852, 116332926949, 659097637368, 3745842085016, 21348227213714, 121974246173946, 698499504058204
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. - Sean A. Irvine, Jun 22 2022
LINKS
Sean A. Irvine, Java program (github)
FORMULA
a(n) ~ (sqrt(3) - 1) * 2^n * 3^(n+1) / (Pi*n). - Vaclav Kotesovec, Apr 30 2024
CROSSREFS
Sequence in context: A151006 A151007 A151008 * A377109 A249925 A370397
KEYWORD
nonn
AUTHOR
Cyril Banderier, Oct 12 2000
EXTENSIONS
Title corrected by Sean A. Irvine, Jun 22 2022
STATUS
approved