login
A054073
Fractal sequence induced by sqrt(2): for k >= 1 let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*sqrt(2)} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
8
1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 13, 1, 6, 11
OFFSET
1,3
COMMENTS
A054073 generates the interspersion A054077; see A194832 and the Mathematica program.
EXAMPLE
p(1)=(1); p(2)=(1,2); p(3)=(3,1,2); p(4)=(3,1,4,2).
When formatted as a triangle, the first 9 rows:
1
1 2
3 1 2
3 1 4 2
5 3 1 4 2
5 3 1 6 4 2
5 3 1 6 4 2 7
5 3 8 1 6 4 2 7
5 3 8 1 6 4 9 2 7
MATHEMATICA
r = Sqrt[2];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]],
{n, 1, 20}]] (* A054073 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A054077 *)
q[n_] := Position[p, n]; Flatten[
Table[q[n], {n, 1, 80}]] (* A054076 *)
(* Clark Kimberling, Sep 03 2011 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved