login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053528
Number of bipartite graphs with 5 edges on nodes {1..n}.
2
0, 0, 0, 0, 0, 60, 1701, 14952, 81228, 331884, 1116675, 3256407, 8500734, 20306286, 45093048, 94189095, 186736368, 353904096, 644842674, 1134910242, 1936817820, 3215467584, 5207403663, 8245956642, 12793342716, 19481177100, 29161079805, 42967291185, 62393475690
OFFSET
0,6
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (n-4)*(n-3)*(n-2)*(n-1)*n*(n^5 + 5*n^4 + 5*n^3 - 85*n^2 - 374*n - 960)/3840.
G.f.: x^5*(60+1041*x-459*x^2+411*x^3-129*x^4+21*x^5)/(1-x)^11. - Colin Barker, May 08 2012
E.g.f.: x^5*(1920 + 7152*x + 3280*x^2 + 560*x^3 + 40*x^4 + x^5)*exp(x)/3840. - G. C. Greubel, May 15 2019
MATHEMATICA
Table[Binomial[n, 5]*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32, {n, 0, 30}] (* G. C. Greubel, May 15 2019 *)
PROG
(PARI) {a(n) = binomial(n, 5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32}; \\ G. C. Greubel, May 15 2019
(Magma) [Binomial(n, 5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32: n in [0..30]]; // G. C. Greubel, May 15 2019
(Sage) [binomial(n, 5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32 for n in (0..30)] # G. C. Greubel, May 15 2019
(GAP) List([0..30], n-> Binomial(n, 5)*(n^5 +5*n^4 +5*n^3 -85*n^2 -374*n -960)/32) # G. C. Greubel, May 15 2019
CROSSREFS
Column k=5 of A117279.
Cf. A000217 (1 edge), A050534 (2 edges), A053526 (3 edges), A053527 (4 edges).
Sequence in context: A054331 A160349 A281373 * A269104 A017776 A035725
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved