login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053527
Number of bipartite graphs with 4 edges on nodes {1..n}.
3
0, 0, 0, 0, 3, 140, 1125, 5355, 19075, 56133, 143955, 332475, 706860, 1404975, 2640638, 4733820, 8149050, 13543390, 21825450, 34227018, 52388985, 78463350, 115233195, 166252625, 236008773, 330108075, 455489125, 620664525, 835994250
OFFSET
0,5
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = (n-3)*(n-2)*(n-1)*n*(n+2)*(n^3-5*n-36)/384.
G.f.: x^4*(3+113*x-27*x^2+18*x^3-2*x^4)/(1-x)^9. - Colin Barker, May 08 2012
E.g.f.: x^4*(48 + 400*x + 176*x^2 + 24*x^3 + x^4)*exp(x)/384. - G. C. Greubel, May 15 2019
MATHEMATICA
CoefficientList[Series[x^4*(3+113*x-27*x^2+18*x^3-2*x^4)/(1-x)^9, {x, 0, 30}], x] (* Vincenzo Librandi, May 08 2012 *)
PROG
(Magma) [(n^5-4*n^4-n^3+16*n^2-12*n)*(n^3-5*n-36)/384: n in [0..30]]; // Vincenzo Librandi, May 08 2012
(PARI) {a(n) = binomial(n, 4)*(n+2)*(n^3-5*n-36)/16}; \\ G. C. Greubel, May 15 2019
(Sage) [binomial(n, 4)*(n+2)*(n^3-5*n-36)/16 for n in (0..30)] # G. C. Greubel, May 15 2019
(GAP) List([0..30], n-> Binomial(n, 4)*(n+2)*(n^3-5*n-36)/16 ) # G. C. Greubel, May 15 2019
CROSSREFS
Column k=4 of A117279.
Cf. A000217 (1 edge), A050534 (2 edges), A053526 (3 edges).
Sequence in context: A139956 A236193 A070322 * A195632 A152504 A191958
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved