login
A053270
Coefficients of the '6th-order' mock theta function rho(q).
11
1, 2, 3, 4, 6, 8, 11, 14, 18, 24, 30, 38, 47, 58, 72, 88, 108, 130, 156, 188, 225, 268, 318, 376, 444, 522, 612, 716, 834, 972, 1129, 1308, 1512, 1744, 2010, 2310, 2652, 3038, 3474, 3968, 4524, 5152, 5857, 6650, 7542, 8540, 9660, 10912, 12312, 13878
OFFSET
0,2
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 3, 13
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.
FORMULA
G.f.: rho(q) = Sum_{n >= 0} ( q^(n(n+1)/2) *(1+q)*(1+q^2)...(1+q^n)/((1-q)*(1-q^3)...(1-q^(2n+1))) ).
a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(3*n)). - Vaclav Kotesovec, Jun 12 2019
MATHEMATICA
Series[Sum[q^(n(n+1)/2) Product[1+q^k, {k, 1, n}]/Product[1-q^k, {k, 1, 2n+1, 2}], {n, 0, 13}], {q, 0, 100}]
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}]/Product[1-x^j, {j, 1, 2*k+1, 2}], {k, 0, Floor[Sqrt[2*nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
CROSSREFS
Other '6th-order' mock theta functions are at A053268, A053269, A053271, A053272, A053273, A053274.
Sequence in context: A143611 A279075 A062464 * A261154 A233693 A003412
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved