OFFSET
0,4
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^9) * eta(q^12)^3 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^18)^2) in powers of q.
Euler transform of period 36 sequence [1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, -1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A186115.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(1/2) q^(1/2) EllipticTheta[ 2, 0, q^3] QPochhammer[ q^12] / (EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 2, 0, q^(9/2)]), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^18 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 10 2015
STATUS
approved