OFFSET
0,3
COMMENTS
Equals row sums of triangle A173284. - Gary W. Adamson, Feb 14 2010
The Kn21 sums (see A180662 for definition) of the 'Races with Ties' triangle A035317 produce this sequence. - Johannes W. Meijer, Jul 20 2011
a(n-1), for n >= 1, gives the number of compositions of n with relative prime parts, and parts not exceeding 2. See the row sums of triangle A030528 where for even n the leading 1 is missing. - Wolfdieter Lang, Jul 27 2023
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1023
K. Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1, eq (1).
Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
H. Ohtsuka and S. Nakamura, On the sum of reciprocal sums of Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009), 153-159.
Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
FORMULA
G.f.: 1/((1-x-x^2)*(1-x^2)).
a(n) = A074331(n+1).
a(n) = A054450(n+1, 1) (second column of triangle).
a(n) = 2*a(n-2) + a(n-3) + 1, with a(0)=1, a(1)=1, a(2)=3.
a(n) = Sum_{alpha=RootOf(-1+z+z^2)} (3+alpha)*alpha^(-1-n)/3 - Sum_{beta=RootOf(-1+z^2)} beta^(-1-n)/2.
a(2*k) = Sum_{j=0..k} F(2*j+1) = F(2*(k+1)) for k >= 0; a(2*k-1) = Sum_{j=0..k} F(2*j) = F(2*k+1)-1 for k >= 1 (F = A000045, Fibonacci numbers).
a(n) = a(n-1) + a(n-2) + (1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, k). - Paul Barry, Oct 23 2004
a(n) = floor(phi^(n+2) / sqrt(5)), where phi is the golden ratio: phi = (1+sqrt(5))/2. - Reinhard Zumkeller, Apr 19 2005
a(n) = Fibonacci(n+1) + a(n-2) with n>1, a(0)=a(1)=1. - Zerinvary Lajos, Mar 17 2008
a(n) = floor(Fibonacci(n+3)^2/Fibonacci(n+4)). - Gary Detlefs, Nov 29 2010
a(4*n) = F(4*n+2); a(4*n+1) = F(4*n+3) - 1; a(4*n+2) = F(4*n+4); a(4*n+3) = F(4*n+5) - 1. - Johannes W. Meijer, Jul 20 2011
a(n+1) = a(n) + a(n-1) + A059841(n+1). - Reinhard Zumkeller, Jan 06 2012
a(n) = floor(|F((1+i)*(n+2))|), n >= 0, with the complex Fibonacci function F: C -> C, z -> F(z) with F(z) := (exp(log(phi)*z) - exp(i*Pi*z)*exp(-log(phi)*z))/(2*phi-1) with the modulus |z|, the imaginary unit i and the golden section phi:=(1+sqrt(5))/2. A Conjecture: For F(z) see, e.g., the T. Koshy reference. ch. 45, p. 523, where F is called f, given in A000045. - Wolfdieter Lang, Jul 24 2012
5*a(n) = (L(n+3)-1)*(L(n+4)+3) -14 -Sum_{k=0..n} L(k+1)*L(k+5) = (L(n+3)-1)*(L(n+4)+3) -L(2*n+7) +A168309(n), where L=A000032. - J. M. Bergot, Jun 13 2014
a(n) = floor(phi*Fibonacci(n+1)), where phi is the golden section. - Michel Dekking, Dec 02 2016
a(n) = -(-1)^n * a(-4-n) for all n in Z. - Michael Somos, Dec 03 2016
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = floor(1/(Sum_{k>=n+4} 1/Fibonacci(k))) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
a(n) = floor(abs(chebyshevU(n/2, 3/2))). - Federico Provvedi, Feb 23 2022
E.g.f.: exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - sinh(x). - Stefano Spezia, Mar 09 2024
EXAMPLE
G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 12*x^5 + 21*x^6 + 33*x^7 + ...
MAPLE
A052952 :=proc(n)
option remember;
local t1;
if n <= 1 then
return 1 ;
fi:
if n mod 2 = 1 then
t1:=0
else
t1:=1;
fi:
procname(n-1)+procname(n-2)+t1;
end proc;
seq(A052952(n), n=0..40) ; # N. J. A. Sloane, May 25 2008
MATHEMATICA
Table[Fibonacci[n+2] -(1-(-1)^n)/2, {n, 0, 40}] (* Vincenzo Librandi, Dec 02 2016 *)
Sum[(-1)^k*Fibonacci[Range[2, 41], 1-k], {k, 0, 1}] (* G. C. Greubel, Oct 21 2019 *)
CoefficientList[Series[1/((1-x-x^2)*(1-x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2020 *)
PROG
(PARI) {a(n) = fibonacci(n+2) - n%2};
(Haskell)
a052952 n = a052952_list !! n
a052952_list = 1 : 1 : zipWith (+)
a059841_list (zipWith (+) a052952_list $ tail a052952_list)
-- Reinhard Zumkeller, Jan 06 2012
(Magma) [Fibonacci(n+2)-(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Dec 02 2016
(Sage) [fibonacci(n+2) -(1-(-1)^n)/2 for n in (0..40)] # G. C. Greubel, Jul 10 2019
(GAP) List([0..40], n-> Fibonacci(n+2) -(1-(-1)^n)/2); # G. C. Greubel, Jul 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Additional formulas and more terms from Wolfdieter Lang, May 02 2000
Better description from Olivier GĂ©rard, Jun 05 2001
STATUS
approved