login
A052405
Numbers without 3 as a digit.
17
0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89
OFFSET
1,3
COMMENTS
This sequence also represents the minimal number of straight lines of a covering tree to cover n X n points arranged in a symmetrical grid. - Marco RipĂ , Sep 20 2018
LINKS
FORMULA
a(n) >> n^k with k = log(10)/log(9) = 1.0479.... - Charles R Greathouse IV, Oct 16 2012
a(n) = replace digits d > 2 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{n>1} 1/a(n) = A082832 = 20.569877... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 14 2020
EXAMPLE
22 has no 3s among its digits, hence it is in the sequence.
23 has one 3 among its digits, hence it is not in the sequence.
MAPLE
a:= proc(n) local l, m; l, m:= 0, n-1;
while m>0 do l:= (d->
`if`(d<3, d, d+1))(irem(m, 9, 'm')), l
od; parse(cat(l))/10
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 01 2016
MATHEMATICA
Select[Range[0, 89], DigitCount[#, 10, 3] == 0 &] (* Alonso del Arte, Oct 16 2012 *)
PROG
(Magma) [ n: n in [0..89] | not 3 in Intseq(n) ]; // Bruno Berselli, May 28 2011
(sh) seq 0 1000 | grep -v 3; # Joerg Arndt, May 29 2011
(PARI)
is(n)=n=digits(n); for(i=1, #n, if(n[i]==3, return(0))); 1 \\ Charles R Greathouse IV, Oct 16 2012
apply( {A052405(n)=fromdigits(apply(d->d+(d>2), digits(n-1, 9)))}, [1..99]) \\ a(n)
next_A052405(n, d=digits(n+=1))={for(i=1, #d, d[i]==3&& return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n. Used in A038611. \\ M. F. Hasler, Jan 11 2020
(Haskell)
a052405 = f . subtract 1 where
f 0 = 0
f v = 10 * f w + if r > 2 then r + 1 else r where (w, r) = divMod v 9
-- Reinhard Zumkeller, Oct 07 2014
CROSSREFS
Cf. A004178, A004722, A038611 (subset of primes), A082832 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Cf. A011533 (complement).
Sequence in context: A133016 A026503 A235498 * A039212 A039221 A183297
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Mar 13 2000
EXTENSIONS
Offset changed by Reinhard Zumkeller, Oct 07 2014
STATUS
approved