login
A051908
Number of ways to express 1 as the sum of unit fractions such that the sum of the denominators is n.
44
1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 4, 5, 5, 2, 4, 5, 5, 9, 4, 4, 6, 4, 4, 7, 8, 4, 10, 9, 9, 11, 8, 13, 13, 15, 16, 21, 18, 16, 22, 19, 18, 30, 24, 19, 26, 28, 26, 29, 35, 29, 44, 28, 47, 48
OFFSET
1,22
COMMENTS
Also the number of partitions of n whose reciprocal sums to 1; "exact partitions". - Robert G. Wilson v, Sep 30 2009
REFERENCES
Derrick Niederman, "Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed", a Perigee Book, Penguin Group, NY, 2009, pp. 82-83. [From Robert G. Wilson v, Sep 30 2009]
LINKS
David A. Corneth, Table of n, a(n) for n = 1..200 (terms a(1)-a(86) from Jud McCranie, a(87)-a(88) from Robert G. Wilson v, a(89)-a(100) from Seiichi Manyama)
David A. Corneth, Tuples up to n = 170
FORMULA
a(n) > 0 for n > 23.
EXAMPLE
1 = 1/2 + 1/2, the sum of denominators is 4, and this is the only expression of 1 as unit fractions with denominator sum 4, so a(4)=1.
The a(22) = 3 partitions whose reciprocal sum is 1 are (12,4,3,3), (10,5,5,2), (8,8,4,2). - Gus Wiseman, Jul 16 2018
MATHEMATICA
(* first do *) << "Combinatorica`"; (* then *) f[n_] := Block[{c = i = 0, k = PartitionsP@n, p = {n}}, While[i < k, If[1 == Plus @@ (1/p), c++ ]; i++; p = NextPartition@p]; c]; Array[f, 88] (* Robert G. Wilson v, Sep 30 2009 *)
Table[Length[Select[IntegerPartitions[n], Sum[1/m, {m, #}]==1&]], {n, 30}] (* Gus Wiseman, Jul 16 2018 *)
PROG
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def A051908(n)
ary = [1]
(2..n).each{|m|
cnt = 0
partition(m, 2, m).each{|ary|
cnt += 1 if ary.inject(0){|s, i| s + 1 / i.to_r} == 1
}
ary << cnt
}
ary
end
p A051908(100) # Seiichi Manyama, May 31 2016
CROSSREFS
A028229 lists n such that a(n)=0.
Sequence in context: A338939 A292150 A181875 * A056614 A126309 A338940
KEYWORD
nonn
AUTHOR
Jud McCranie, Dec 16 1999
STATUS
approved