Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Feb 06 2023 14:55:12
%S 1,2,2,3,3,6,4,4,6,1,5,5,20,30,30,6,6,15,20,30,1,7,7,42,35,140,42,42,
%T 8,8,28,84,105,28,42,1,9,9,72,84,1,105,140,30,30,10,10,45,120,140,28,
%U 105,20,30,1,11,11,110,495,3960,924,231,165,220,66,66,12,12,66,55,495,264,308,132,165,44,66,1
%N Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
%C Leading column gives the Bernoulli numbers A027641/A027642.
%H Alois P. Heinz, <a href="/A051715/b051715.txt">Antidiagonals n = 0..140, flattened</a>
%H M. Kaneko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html">The Akiyama-Tanigawa algorithm for Bernoulli numbers</a>, J. Integer Sequences, 3 (2000), #00.2.9.
%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>
%F a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - _Fabián Pereyra_, Jan 14 2023
%e Table begins:
%e 1 1/2 1/3 1/4 1/5 1/6 1/7 ...
%e 1/2 1/3 1/4 1/5 1/6 1/7 ...
%e 1/6 1/6 3/20 2/15 5/42 ...
%e 0 1/30 1/20 2/35 5/84 ...
%e -1/30 -1/30 -3/140 -1/105 ...
%p a:= proc(n,k) option remember;
%p `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
%p end:
%p seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # _Alois P. Heinz_, Apr 17 2013
%t nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* _Jean-François Alcover_, Nov 28 2011 *)
%Y Rows 2, 3, 4 give A026741/A045896, A051712/A051713, A051722/A051723.
%Y Columns 0, 1, 2, 3 give A000367/A002445, A051716/A051717, A051718/A051719, A051720/A051721.
%Y Numerators are in A051714.
%K nonn,frac,nice,easy,tabl,look
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _James A. Sellers_, Dec 08 1999