login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051715
Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
19
1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
OFFSET
0,2
COMMENTS
Leading column gives the Bernoulli numbers A027641/A027642.
FORMULA
a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)
CROSSREFS
Numerators are in A051714.
Sequence in context: A165122 A240505 A372007 * A143269 A036817 A239962
KEYWORD
nonn,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
STATUS
approved