login
A051382
Numbers k whose base 3 expansion matches (0|1)*(02)?(0|1)* (no more than one "02" allowed in midst of 0's and 1's).
13
0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 18, 19, 21, 22, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 54, 55, 57, 58, 63, 64, 66, 67, 81, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 99, 100, 102, 103, 108, 109, 110, 111, 112, 114, 115, 117, 118, 119, 120, 121, 162, 163
OFFSET
1,3
COMMENTS
Representation of 2n in base 3 consists entirely of 0's and 2's, except possibly for a single pair of adjacent 1's among them.
9 divides neither C(2s-1,s) [= A001700(s)] nor C(2s,s) [= A000984(s)] if and only if s = a(n). [Cf. also A249721].
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..32768 (first 8193 terms from Antti Karttunen)
Eric Weisstein's World of Mathematics, Binomial Coefficient
EXAMPLE
In base 3 the terms look like 0, 1, 2, 10, 11, 20, 21, 100, 101, 102, 110, 111, 200, 201, 210, 211, 1000, 1001, 1002, 1010, 1011, 1020, 1021, 1100, 1101, 1102, 1110, 1111, 2000, 2001, 2010, 2011, 2100, 2101, 2 110, 2111, 10000
MAPLE
q:= n-> (l-> (h-> h=0 or h=1 and l[1+ListTools[Search](2, l)]
=0 )(numboccur(l, 2)))([convert(n, base, 3)[], 0]):
select(q, [$0..163])[]; # Alois P. Heinz, Jun 28 2021
PROG
(Perl) sub conv_x_base_n { my($x, $b) = @_; my ($r, $z) = (0, ''); do { $r = $x % $b; $x = ($x - $r)/$b; $z = "$r" . $z; } while(0 != $x); return($z); }
(Perl) for($i=1; $i <= 201; $i++) { if(("0" . conv_x_base_n($i, 3)) =~ /^(0|1)*(02)?(0|1)*$/) { print $i, ", "; } }
(Scheme, with Antti Karttunen's IntSeq-library)
(define A051382 (MATCHING-POS 0 0 in_A051382?))
(define (in_A051382? n) (let loop ((n n) (seen02yet? #f)) (cond ((zero? n) #t) ((= 1 n) #t) ((modulo n 3) => (lambda (r) (cond ((= r 2) (if (or seen02yet? (not (zero? (modulo (/ (- n r) 3) 3)))) #f (loop (/ (- n r) 3) #t))) (else (loop (/ (- n r) 3) seen02yet?))))))))
(Python)
import re
from sympy.ntheory.digits import digits
def b3(n): return "".join(map(str, digits(n, 3)[1:]))
def ok(n): return re.fullmatch('2(0|1)*|(0|1)*(02)?(0|1)*', b3(n)) != None
print(list(filter(ok, range(164)))) # Michael S. Branicky, Jun 26 2021
(PARI) is(n)=my(v=digits(n, 3)); for(i=1, #v, if(v[i]==2, if(i>1 && v[i-1], return(0)); for(j=i+1, #v, if(v[j]==2, return(0))); return(1))); 1 \\ Charles R Greathouse IV, Feb 23 2024
CROSSREFS
Complement: A249719.
Terms of A249721 halved.
Sequence in context: A065904 A039108 A020756 * A026514 A285974 A227194
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
a(0) = 0 prepended as a border-line case by Antti Karttunen, Nov 14 2014
Offset changed to 1 by Georg Fischer, Jun 28 2021
STATUS
approved