login
A051000
Sum of cubes of odd divisors of n.
23
1, 1, 28, 1, 126, 28, 344, 1, 757, 126, 1332, 28, 2198, 344, 3528, 1, 4914, 757, 6860, 126, 9632, 1332, 12168, 28, 15751, 2198, 20440, 344, 24390, 3528, 29792, 1, 37296, 4914, 43344, 757, 50654, 6860, 61544, 126, 68922, 9632, 79508, 1332, 95382, 12168, 103824, 28
OFFSET
1,3
COMMENTS
The sum of cubes of even divisors of 2*k equals 8*A001158(k), and the sum of cubes of even divisors of 2*k-1 vanishes, for k >= 1. - Wolfdieter Lang, Jan 07 2017
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 21 2020
LINKS
John A. Ewell, On a relation between two divisor functions, JP Journal of Algebra, Number Theory and Applications, Vol. 7, No. 2 (2007), pp. 241-243.
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Eric Weisstein's World of Mathematics, Odd Divisor Function.
FORMULA
Dirichlet g.f.: (1-2^(3-s))*zeta(s)*zeta(s-3). Dirichlet convolution of (-1)^n*A176415(n) and A000578. - R. J. Mathar, Apr 06 2011
a(n) = Sum_{k=1..A001227(n)} A182469(n,k)^3. - Reinhard Zumkeller, May 01 2012
G.f.: Sum_{k>=1} (2*k - 1)^3*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 720. - Vaclav Kotesovec, Jan 31 2019
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(3*e+3)-1)/(p^3-1) for p > 2. - Amiram Eldar, Sep 14 2020
For k>=0, a(2^k) = 1. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{n >= 1} x^n*(1 + 23*x^(2*n) + 23*x^(4*n) + x^(6*n))/(1 - x^(2*n))^4. See row 4 of A060187. - Peter Bala, Dec 20 2021
a(n) = Sum_{k=0..n-1} A000203(2*n-2*k-1)*A000203(2*k+1)/A006519(n)^3 (Ewell, 2007). - Amiram Eldar, Feb 24 2024
MATHEMATICA
Table[Total[Select[Divisors[n], OddQ]^3], {n, 50}] (* Harvey P. Dale, Jun 28 2012 *)
f[2, e_] := 1; f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
PROG
(Haskell)
a051000 = sum . map (^ 3) . a182469_row
-- Reinhard Zumkeller, May 01 2012
(PARI) a(n) = sumdiv(n, d, (d%2)*d^3); \\ Michel Marcus, Jan 04 2017
(Python)
from sympy import divisor_sigma
def A051000(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(), 3)) # Chai Wah Wu, Jul 16 2022
KEYWORD
nonn,mult
STATUS
approved