login
A048882
A convolution triangle of numbers obtained from A034255.
7
1, 10, 1, 120, 20, 1, 1560, 340, 30, 1, 21216, 5520, 660, 40, 1, 297024, 88032, 12880, 1080, 50, 1, 4243200, 1392768, 236448, 24640, 1600, 60, 1, 61526400, 21952320, 4187232, 512464, 41800, 2220, 70, 1, 902387200, 345396480, 72452160, 10060416
OFFSET
0,2
COMMENTS
a(n,m)=: s2(5; n,m), generalizing s2(2; n,m) := A007318(n-1,m-1) (Pascal), s2(3; n,m) := A035324(n,m), s2(4; n,m)= A035529.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n+1, m) = 4*(4*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.
G.f. for column m: ((-1+(1-16*x)^(-1/4))/4)^m.
CROSSREFS
Cf. A035529, A034255. Row sums: A048965(n), n >= 1.
Sequence in context: A287494 A287753 A185544 * A192357 A156286 A049223
KEYWORD
easy,nonn,tabl
STATUS
approved