login
A047654
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^2 in powers of x.
25
1, -2, 1, 0, -2, 2, -2, 2, 1, 0, 2, -2, 3, 0, 2, 0, 0, 2, -2, 0, -2, 2, -1, 0, 0, -2, -2, -2, 1, -2, 0, -2, -2, 0, 2, 0, -2, 0, -2, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 1, 2, 0, -2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, -4, 0, 0, 2, 1, -2, 0, -2, 0, 0, 0, 0, 2, -4, 1, 0, 0, -2, -2, -2, -2, 0, 0, -2, 0, 2, -2, 2, -2
OFFSET
2,2
LINKS
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
FORMULA
a(n) = [x^n]( QPochhammer(-x) - 1 )^2. - G. C. Greubel, Sep 07 2023
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 2):
seq(a(n), n=2..94); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax=94; CoefficientList[Series[(Product[(1-(-x)^j), {j, nmax}] - 1)^2, {x, 0, nmax}], x]//Drop[#, 2] & (* Ilya Gutkovskiy, Feb 07 2021 *)
With[{k=2}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x, 0, 125}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
PROG
(PARI) seq(n)={Vec((prod(j=1, n, 1-(-x)^j + O(x^n)) - 1)^2)} \\ Andrew Howroyd, Feb 07 2021
(Magma)
m:=120;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^2 )); // G. C. Greubel, Sep 07 2023
(SageMath)
from sage.modular.etaproducts import qexp_eta
m=125; k=2;
def f(k, x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A047654_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(k, x) ).list()
a=A047654_list(m); a[k:] # G. C. Greubel, Sep 07 2023
KEYWORD
sign
EXTENSIONS
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021
STATUS
approved