OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(3+2*x+x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n+1-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 + sin(x) - 2*cos(x) + sinh(x) + 4*x*exp(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-2)*Pi/16 - log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 26 2021
MAPLE
A047582:=n->(8*n+1-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047582(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
MATHEMATICA
Table[(8n+1-I^(2n)-(2-I)*I^(-n)-(2+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 5, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved