login
A047480
Numbers that are congruent to {2, 5, 7} mod 8.
3
2, 5, 7, 10, 13, 15, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 45, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 77, 79, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141, 143, 146, 149, 151, 154, 157, 159
OFFSET
1,1
FORMULA
G.f.: x*(1+x)*(x^2+x+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-6. (End)
a(n) = A047408(n) + 1. - Lorenzo Sauras Altuzarra, Jan 31 2023
MAPLE
A047480:=n->(24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047480(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{2, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
Flatten[Table[8 n + {2, 5, 7}, {n, 0, 150}]] (* Vincenzo Librandi, Jun 12 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {2, 5, 7, 10}, 100] (* Harvey P. Dale, Jun 18 2018 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 5, 7]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Different from A038127.
Cf. A047408.
Sequence in context: A330064 A022841 A038127 * A376284 A285207 A140398
KEYWORD
nonn,easy
STATUS
approved