login
A047378
Numbers that are congruent to {2, 4, 5} mod 7.
2
2, 4, 5, 9, 11, 12, 16, 18, 19, 23, 25, 26, 30, 32, 33, 37, 39, 40, 44, 46, 47, 51, 53, 54, 58, 60, 61, 65, 67, 68, 72, 74, 75, 79, 81, 82, 86, 88, 89, 93, 95, 96, 100, 102, 103, 107, 109, 110, 114, 116, 117, 121, 123, 124, 128, 130, 131, 135, 137, 138, 142
OFFSET
1,1
FORMULA
G.f.: x*(2+2*x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-3, a(3k-2) = 7k-5. (End)
MAPLE
A047378:=n->(21*n-9-9*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047378(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{2, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {2, 4, 5, 9}, 100] (* Harvey P. Dale, Jul 14 2022 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Cf. A153727 (first differences).
Sequence in context: A069001 A287181 A364732 * A101155 A065825 A113755
KEYWORD
nonn,easy
STATUS
approved