OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x^2*(2+x+x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-17-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
MAPLE
A047340:=n->(14*n-17-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047340(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 3, 4}, Mod[#, 7]]&] (* or *) LinearRecurrence[ {1, 0, 0, 1, -1}, {0, 2, 3, 4, 7}, 100] (* Harvey P. Dale, Feb 16 2014 *)
CoefficientList[Series[x (2 + x + x^2 + 3 x^3)/((1 + x) (1 + x^2) (x - 1)^2), {x, 0, 200}], x] (* Vincenzo Librandi, Feb 17 2014 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [0, 2, 3, 4]]; // Vincenzo Librandi, Feb 17 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Feb 17 2014
STATUS
approved