login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046643
From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.
23
1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 35, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 63, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 35, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 231, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 35, 35, 1, 1, 3, 1, 1, 1, 5, 1, 3
OFFSET
1,4
COMMENTS
b(n) = A046643(n)/A046644(n) is multiplicative with b(p^n) = (2n-1)!!/2^n/n!. Dirichlet g.f. of A046643(n)/A046644(n) is sqrt(zeta(x)). - Christian G. Bower, May 16 2005
That is, b(p^n) = A001147(n) / (A000079(n)*A000142(n)) = A010050(n)/A000290(A000165(n)) = (2n)!/((2^n*n!)^2). - Antti Karttunen, Jul 08 2017
FORMULA
Sum_{b|d} b(d)b(n/d) = 1. Also b_{2^j} = A001790[ j ]/2^A005187[ j ].
From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = A001790(n).
a(1) = 1; for n > 1, a(n) = A001790(A067029(n)) * a(A028234(n)).
(End)
EXAMPLE
b_1, b_2, ... = 1, 1/2, 1/2, 3/8, 1/2, 1/4, 1/2, 5/16, 3/8, 1/4, 1/2, 3/16, ...
MAPLE
b := proc(n) option remember; local c, i, t1; if n = 1 then 1 else c := 1; t1 := divisors(n);
for i from 2 to nops(t1)-1 do c := c-b(t1[ i ])*b(n/t1[ i ]); od; c/2; fi; end;
MATHEMATICA
b[1] = 1; b[n_] := b[n] = (dn = Divisors[n]; c = 1;
Do[c = c - b[dn[[i]]]*b[n/dn[[i]]], {i, 2, Length[dn] - 1}]; c/2); a[n_] := Numerator[b[n]]; a /@ Range[90] (* Jean-François Alcover, Apr 04 2011, after Maple version *)
PROG
(PARI)
A046643perA046644(n) = { my(c=1); if(1==n, c, fordiv(n, d, if((d>1)&&(d<n), c -= (A046643perA046644(d)*A046643perA046644(n/d)))); (c/2)); }
A046643(n) = numerator(A046643perA046644(n)); \\ After Maple-program, Antti Karttunen, Jul 08 2017
(Scheme)
(define (A046643 n) (if (= 1 n) n (* (A001790 (A067029 n)) (A046643 (A028234 n)))))
;; Or, after Christian G. Bower's May 16 2005 comment:
(definec (A046643perA046644 n) (if (= 1 n) n (* (/ (A010050 (A067029 n)) (A000290 (A000165 (A067029 n)))) (A046643perA046644 (A028234 n)))))
(define (A046643 n) (numerator (A046643perA046644 n)))
(define (A046644 n) (denominator (A046643perA046644 n)))
;; Antti Karttunen, Jul 08 2017
KEYWORD
nonn,easy,frac,nice,mult
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved