login
A046307
Numbers that are divisible by at least 7 primes (counted with multiplicity).
3
128, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 972, 1008, 1024, 1056, 1080, 1088, 1120, 1152, 1200, 1216, 1248, 1280, 1296, 1344, 1408, 1440, 1458, 1472, 1512, 1536, 1568, 1584, 1600, 1620
OFFSET
1,1
LINKS
FORMULA
Product p_i^e_i with Sum e_i >= 7.
MATHEMATICA
Select[Range[2000], PrimeOmega[#]>6&] (* Harvey P. Dale, Nov 16 2012 *)
PROG
(PARI) is(n)=bigomega(n)>6 \\ Charles R Greathouse IV, Sep 17 2015
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046307(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, i)) for i in range(2, 7)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A046308.
Sequence in context: A109651 A114408 A114418 * A036331 A046308 A110290
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved