OFFSET
1,1
COMMENTS
There exist odd integers 2k-1 such that (2k-1)2^n-1 is always composite.
REFERENCES
Ribenboim, P., The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
Eric Weisstein's World of Mathematics, Riesel Number.
MATHEMATICA
max = 10^6; (* this maximum value of m is sufficient up to n=1000 *) a[1] = 2; a[2] = 0; a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2*n - 1)*2^m - 1], Return[m]]] /. Null -> -1; Reap[ Do[ Print[ "a(", n, ") = ", a[n]]; Sow[a[n]], {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved