login
A046069
Riesel Problem: Smallest m >= 0 such that (2n-1)2^m-1 is prime, or -1 if no such value exists.
15
2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2
OFFSET
1,1
COMMENTS
There exist odd integers 2k-1 such that (2k-1)2^n-1 is always composite.
REFERENCES
Ribenboim, P., The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.
LINKS
Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
Eric Weisstein's World of Mathematics, Riesel Number.
MATHEMATICA
max = 10^6; (* this maximum value of m is sufficient up to n=1000 *) a[1] = 2; a[2] = 0; a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2*n - 1)*2^m - 1], Return[m]]] /. Null -> -1; Reap[ Do[ Print[ "a(", n, ") = ", a[n]]; Sow[a[n]], {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)
CROSSREFS
Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129.
Bisection of A040081.
Sequence in context: A029399 A302172 A249338 * A320042 A055651 A175929
KEYWORD
nonn
STATUS
approved