login
A046020
Discriminants of imaginary quadratic fields with class number 23 (negated).
44
647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671, 3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563, 6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739, 13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379, 20323
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..68 (full sequence, from Steven Arno et al.)
Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998) 295-330.
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ Do[ If[ NumberFieldClassNumber[ Sqrt[-n] ] == 23, d = -NumberFieldDiscriminant[ Sqrt[-n] ]; Print[d]; Sow[d]], {n, 1, 21000}]][[2, 1]] // Union (* Jean-François Alcover, Oct 22 2012 *)
PROG
(PARI) select(n->qfbclassno(-n)==23, vector(22696, n, 4*n+3)) \\ Charles R Greathouse IV, Apr 25 2013
KEYWORD
nonn,fini,full
EXTENSIONS
68 discriminants in this sequence (proved).
STATUS
approved