login
A045674
Number of 2n-bead balanced binary necklaces which are equivalent to their reverse, complement and reversed complement.
12
1, 1, 2, 2, 4, 4, 6, 8, 12, 16, 20, 32, 38, 64, 72, 128, 140, 256, 272, 512, 532, 1024, 1056, 2048, 2086, 4096, 4160, 8192, 8264, 16384, 16512, 32768, 32908, 65536, 65792, 131072, 131344, 262144, 262656, 524288, 524820, 1048576, 1049600
OFFSET
0,3
FORMULA
a(2n) = a(n) + 2^(n-1), a(2n+1) = 2^n. - Ralf Stephan, Nov 01 2003
MATHEMATICA
a[0] = 1; a[n_] := a[n] = If[EvenQ[n], 2^(n/2-1) + a[n/2], 2^((n-1)/2)]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 30 2017 *)
PROG
(PARI) a(n) = if(n<1, n==0, my(t=0, r=n); while(r%2==0, r=r/2; t+=2^(r-1)); t + 2^(r\2)); \\ Andrew Howroyd, Sep 29 2017
CROSSREFS
Cf. A045654.
Sequence in context: A094858 A327851 A029940 * A276065 A325253 A143483
KEYWORD
nonn
STATUS
approved