OFFSET
0,2
COMMENTS
(s,t)-sequences; the case s=2, t=2.
The sequence can also be characterized by a special numeration system-see above reference.
For n>=1, these are the positions of 0 in the fixed point of the morphism 0->11, 1->1110; see A285671 and Mathematica program. Conjecture: -1 < n*r - a(n) < 3 for n>=0, where r = (5 + sqrt(17))/2. - Clark Kimberling, May 02 2017
LINKS
Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discr. Math. 308 (2008), 4578-4588; see also preprint.
Aviezri S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
Aviezri S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
Aviezri S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
FORMULA
b(n)=2a(n)+2n, where a=A045671.
MATHEMATICA
s=2; t=2;
mex:=First[Complement[Range[1, Max[#1]+1], #1]]&;
a[0]=0; b[n_]:=b[n]=s*a[n]+t*n;
a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]}, {i, 0, n-1}]]];
Table[a[n], {n, 200}] (* A045671 *)
Table[b[n], {n, 200}] (* A045672 *)
(* Clark Kimberling, Apr 02 2011 *)
s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 1, 1, 0}}] &, {0}, 10]; (* A285671 *)
Flatten[Position[s, 0]]; (* A045672 *)
Flatten[Position[s, 1]]; (* A045671 *)
(* - Clark Kimberling, May 02 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved