OFFSET
1,2
COMMENTS
Contains the repunits R_n, (A000042 or A002275): For any m in the sequence (divisible by neither 2 nor 5), Euler's theorem (i.e., m | 10^m - 1 = 9*R_n) guarantees that R_n is always some multiple of m (see A099679) and thus forms a subsequence. - Lekraj Beedassy, Oct 26 2004
Inverse formula: n = 4*floor(a(n)/10) + floor((a(n) mod 10)/3) + 1. - Carl R. White, Feb 06 2008
Numbers ending with 1, 3, 7 or 9. - Lekraj Beedassy, Apr 04 2009
Complement of A065502. - Reinhard Zumkeller, Nov 15 2009
Numbers k such that k^(4*j) mod 10 = 1, for any j. - Gary Detlefs, Jan 03 2012
Numbers coprime to 10. - Charles R Greathouse IV, Sep 05 2013
This is also the sequence of numbers such that all their divisors are the sum of the proper divisors of some number (see A001065 (sum of proper divisors) and A078923 (possible values of sigma(n)-n)). This is due to the fact that in the set of untouchable numbers (A005114) there are only 2 prime numbers (2 and 5) and all other terms are even composite. - Michel Marcus, Jun 14 2014
Numbers n for which A001589(n) is divisible by 5. - Bruno Berselli, Jun 18 2014
For a(n) > 1, positive integers x such that the decimal representation of 1/x is purely periodic after the decimal point (1/x is a repeating decimal with no non-repeating portion). - Doug Bell, Aug 05 2015
The asymptotic density of this sequence is 2/5. - Amiram Eldar, Oct 18 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
a(n) = 10*floor((n-1)/4) + 2*floor( (4*((n-1) mod 4) + 1)/3 ) + 1; a(n) = a(n-1) + 2 + 2*floor(((x+6) mod 10)/9). - Carl R. White, Feb 06 2008
a(n) = 2*n + 2*floor((n-3)/4) + 1. - Kenneth Hammond (weregoose(AT)gmail.com), Mar 07 2008
a(n) = -1 + 2*n + 2*floor((n+1)/4). - Kenneth Hammond (weregoose(AT)gmail.com), Mar 25 2008
From R. J. Mathar, Sep 22 2009: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: x*(1 + 2*x + 4*x^2 + 2*x^3 + x^4)/((1+x) * (x^2+1) * (x-1)^2). (End)
a(n) = (10*n + 2*(-1)^(n*(n+1)/2) - (-1)^n - 5)/4. - Bruno Berselli, Nov 06 2011
G.f.: x * (1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x) * (1 - x^4)). - Michael Somos, Jun 15 2014
a(1 - n) = -a(n) for all n in Z. - Michael Somos, Jun 15 2014
0 = (a(n) - 2*a(n+1) + a(n+2)) * (a(n) - 4*a(n+2) + 3*a(n+3)) for all n in Z. - Michael Somos, Jun 15 2014
From Mikk Heidemaa, Nov 22 2017: (Start)
a(n) = (1/2)*(5*n + ((3*n + 2) mod 4) - 4);
a(n) = (1/4)*((-1)^(n + 1) + 10*n + 2*cos((n*Pi)/2) - 2*sin((n*Pi)/2) - 5);
a(n) = (1/4)*((-1)^(1 + n) + (1 - i)*exp(-(1/2)*i*n*Pi) + (1 + i)*exp(i*n*Pi/2) + 10*n - 5) (for n > 0), where i is the imaginary unit. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(10-2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 12 2021
E.g.f.: (2 + cos(x) + (5*x - 3)*cosh(x) - sin(x) + (5*x - 2)*sinh(x))/2. - Stefano Spezia, Dec 07 2022
EXAMPLE
a(18) = 10*floor(17/4) + 2*floor( (4*(17 mod 4) + 1)/3 ) + 1
= 10*4 + 2*floor( (4*(1)+1)/3 ) + 1
= 40 + 2*floor(5/3) + 1
= 40 + 2*1 + 1
= 43.
G.f. = x + 3*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 13*x^6 + 17*x^7 + 19*x^8 + ...
MAPLE
MATHEMATICA
Flatten[Table[10n + {1, 3, 7, 9}, {n, 0, 19}]] (* Alonso del Arte, Jan 13 2012 *)
Select[2Range@78 -1, Mod[#, 5] > 0 &] (* Robert G. Wilson v, Apr 02 2017 *)
Map[(1/2*(5*# + Mod[3*# + 2, 4] - 4))&, Range[10^3]] (* Mikk Heidemaa, Nov 23 2017 *)
PROG
(GNU bc) scale=0; for(n=1; n<=100; n++) 10*((n-1)/4)+2*((4*((n-1)%4)+1)/3)+1 /* Carl R. White, Feb 06 2008 */
(PARI) a(n)=10*(n>>2)+[-1, 1, 3, 7][n%4+1] \\ Charles R Greathouse IV, Jul 31 2011
(PARI) is(n)=gcd(n, 10)==1 \\ Charles R Greathouse IV, Sep 05 2013
(PARI) {a(n) = 2*n - 1 + (n+1) \ 4 * 2}; /* Michael Somos, Jun 15 2014 */
(Magma) [ 2*n + 2*Floor((n-3)/4) + 1: n in [1..70] ]; // Vincenzo Librandi, Aug 01 2011
(Haskell)
a045572 n = a045572_list !! (n-1)
a045572_list = filter ((/= 0) . (`mod` 5)) a005408_list
-- Reinhard Zumkeller, Dec 10 2011
(Python)
def A045572(n): return 2*(n+(n+1)//4) - 1 # Chai Wah Wu, Jan 08 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeff Burch, Dec 11 1999
STATUS
approved