OFFSET
1,1
COMMENTS
For a prime p congruent to 1 mod 8, 2 is a biquadratic residue mod p if and only if there are integers x,y such that x^2 + 64*y^2 = p. 2 is also a biquadratic residue mod 2 and mod p for any prime p congruent to 7 mod 8 and for no other primes. - Fred W. Helenius (fredh(AT)ix.netcom.com), Dec 30 2004
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Franz Lemmermeyer, Bibliography on Reciprocity Laws
MATHEMATICA
ok[p_] := Reduce[ Mod[x^4 - 2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200]], ok] (* Jean-François Alcover, Dec 14 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(919) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
(PARI) forprime(p=2, 2000, if([]~!=polrootsmod(x^4-2, p), print1(p, ", "))); print(); \\ Joerg Arndt, Jul 27 2011
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved